Ancient sea monsters were drab, not colorful

Los Angeles TimesFebruary 2, 2014 

Researchers believe black skin gave the ichthyosaur multiple advantages.

ARTHUR WEASLEY — WIKIPEDIA

A trick of chemistry has restored fossil turtles and other marine reptiles to their living color. But the result fell far short of the gaudy transformations wrought by Hollywood in its classic black-and-white movies.

Ancient leatherback turtles, ichthyosaurs and mosasaurs were a rather staid and formal black, maybe with some gray, according to a study published online last month in the journal Nature.

The study offers the first direct chemical evidence of pigmentation in the three species, and illustrates an example of convergent evolution, when animals separately develop the same adaptive features.

Researchers blasted the fossil samples with a beam of ions that enabled them to analyze and image the microbodies embedded in dark film that had the appearance of dark skin. Analysis of those molecules, compounds and fragments showed they were identical to melanosomes, the cellular organelles that produce various types of melanin, which can produce colors from black to yellow.

The samples, however, were dominated by the black- and gray-producing eumelanin, according to the study.

“Every living animal out there has eumelanin, so that by itself is not surprising,” said the study’s lead author, Johan Lindgren, a vertebrate paleontologist at Lund University in Sweden. “What is surprising is the sheer concentration of these fossilized melanosomes.”

Lindgren and his colleagues examined with colleagues fossils of a leatherback turtle dated to 55 million years ago, a lizardlike mosasaur from 86 million years ago, and an ichthyosaur that was 190 million to 196 million years old. Each is a marine reptile that breathed on the sea surface, and all three once roamed on land but returned to the sea.

The researchers used the modern leatherback as its frame of reference. That animal has some unusual characteristics, not the least of which is the hard skin that forms its carapace. The largest sea turtle on Earth, the modern leatherback grows very fast, and can live in arctic and subarctic environments.

“In order to do so it has a number of adaptations for these conditions,” Lindgren said. “One of them, we presume, is the fact that it has a black skin.”

This “enables it to absorb the solar heat more quickly during daylight hours, and these animals are known to bask at the surface during daylight hours in high-latitude areas.”

Researchers believe that black skin gave all three ancient marine reptiles a thermal advantage, but also provided protection against ultraviolet radiation and concealment against a dark background, a common dorsal feature of marine life.

Lindgren believes the complex techniques used to analyze the fossils, which came from museums in Denmark, Texas and Britain, can be used on many more samples that show imprints of skin material.

“This is a technique that can definitely be used in many, many samples, regardless of what they are made of,” he said.

News & Observer is pleased to provide this opportunity to share information, experiences and observations about what's in the news. Some of the comments may be reprinted elsewhere in the site or in the newspaper. We encourage lively, open debate on the issues of the day, and ask that you refrain from profanity, hate speech, personal comments and remarks that are off point. Thank you for taking the time to offer your thoughts.

Commenting FAQs | Terms of Service